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ABSTRACT

Design for Testability (DFT) is receiving major emphasis

in the VSLI design field due to increasing circuit

complexity. The utility of the silicon compiler and its

value to a system designer without extensive VLSI design

experience is discussed. Two major techniques for DFT,

Scanpath Design and Built-in Test Design, are implemented

using the Genesil silicon compiler. The basic building

block, the shiftable test latch, is described in random logic

block form and parallel datapath form. Linear feedback shift

registers used as random vector generators and signature

analyzers are used in the Built-in Test design. An Automatic

Test Generation (ATG) program is used to provide a measure of

fault coverage for the two DFT techniques. The Appendix is a

brief tutorial illustrating the use of the Genesil system's

shiftable test latch in its different configurations.
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I. INTRODUCTION

A. BACKGROUND

VLSI (Very Large Scale Integrated) circuit technology has

resulted in the dramatic increase in the circuit density

(number of components, gates, circuits or memory bits)

contained within a single chip. Along with the increase in

the number of circuits has come a corresponding increase in

the complexity of circuit testing. VLSI circuits are

technical products and it is important for the user to know

if the device "works" from a physical standpoint as well as a

functional one. There are two questions that arise that

provide the impetus for physical testing of a device:

o Does the device work?

o Will it continue to work?

These questions determine the availability and the

reliability of the chip or system in question.

There is also a third question: "Is it affordable?" that

determines the cost effectiveness of the device. The

question of cost effectiveness is an important one given the

fact that the increasing complexity of VLSI components has

resulted in a trend of higher testing costs. It is

conceivable that some circuits are so complex that testing

them by conventional methods might itself be prohibitive and

an otherwise good design might not go into production because

there is no way to determine convincingly its reliability.
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Testing, in a general sense, means to examine a product to

ensure that it functions correctly and exhibits the

properties and characteristics that it was designed to

possess [Ref. 1:p. 13].

VLSI technology has introduced complexity into the

testing of integrated circuits in two important ways. First,

the circuits have become so large and complicated that

testing cannot be done by an individual. This has made

planning and designing for testing more difficult. Computer-

aided tools are one solution to this problem. Second,

integrated circuits have become so fast and compact as well

as being largely inaccessible that new methods of testing are

required. Accessibility refers to the ease at which the

.ntc-rnal nodes of a device are made available to a testing

procedure for control and observation. New methods of

testing required to deal with the increase in complexity lead

to increases in cost.

Testing consists of supplying a stimuli to the circuit

under test and obtaining and comparing its responses to the

expected responses. The rapid growth of VLSI circuits has

led to a new industry and technology, heavily dependent on

the computer to aid in testing. This is the Automatic Test

Equipment (ATE) industry. ATE generate test patterns, supply

the test patterns to the object under test, obtain the output

responses, and compare the response patterns to predicted

behavior. Despite the growth of the ATE industry, LSI and
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VLSI testing has continued to become more difficult and

costly.

Conventional testing, as defined by F. Tsui [Ref. l:p.

48], is testing that relies primarily on adding improved

mechanical means for testing and not on the addition of logic

within the design. Design for Testability (DFT), on the

other hand, by relying on the addition of logic to facilitate

testing, can be considered to be electronic in nature vice

mechanical and an integral part of system design.

Conventional testing has three characteristics that

differentiate it from DFT:

* Conventional methods cannot test parts in-system. Com-

ponent testing must be done in isolation from the rest of

the system.

o Conventional methods rely on test equipment to supply

test patterns and capture the output response.

o Conventional rthods require tester-driven timing. The

timing control originates from the test equipment and is

not considered part of the system timing.

Because of the increasing circuit integration and speeds of

VLSI design, conventional test methods have become

inadequate. The chief reason is that the methods rely on

feeding the signals through some sort of test-interface.

With the increasing density of the circuits, more

input/output (I/O) pins are required for the normal operation

of the chip. However, due to technology constraints, the
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miniaturization of the I/O pads has not kept pace with the

rate of increasing density within the core of the chip.

Thus, the number of I/O pins available for testing has

decreased. Also, as the physical size of the chips has

decreased, so has the ratio of periphery to surface area

resulting in less area available for an increasing number of

pins. The use of a test-interface also contributes noise and

some signal distortion that might affect the successful

implementation of a test.

As mentioned above, although the per-chip fabrication and

assembly costs have decreased rapidly as the technology has

matured, testing costs have not been reduced. Consequently,

as a percentage of the total cost of a product, the cost of

testing has continually increased [Ref. 1: p. 15]. Costs of

testing include test equipment (hardware), test generation

which reflects costs in both test pattern generation and

verification, testing time, and testing personnel. The goal

of Design for Testability (DFT) is to find ways to make

testing easier, more efficient, and less costly. It is

believed that through the incorporation of testability design

from the very beginning of a design project, testing can be

made more economical and effective. DFT adds circuits to the

object to be designed in order to make it easier to test.

These circuits add to the observability and controllability

of the system.
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Controllability refers to the ease by which a specific

signal can be produced at some internal node of a design by

applying a signal to the inputs of the design. Observability

refers to the ease by which the state of an internal node can

be determined at the outputs of the design [Ref. 2:p. 100].

These two concepts are important in understanding circuit

characteristics that determine testability. This is the

chief aim of the work done in this thesis, to demonstrate

Design for Testability as it is implemented by the devices

available through the Genesil Silicon Compiler, hereafter

referred to simply as Genesil.

Testing, at the integrated circuit level, mainly involves

combinational logic. Most digital systems are built with

mixtures of combinational networks and latches. Latches are

difficult to test because they are sequential in nature and

the feedback loops inherent in sequential devices are

difficult to test. A fault in a sequential circuit would

require a sequence of test patterns or vectors to detect it.

The method that Genesil uses to handle sequential circuits,

time unrolling, will be discussed in Chapter V.

With VLSI circuits becoming more inaccessible, DFT

provides ways of gaining access to the interior of the

circuit to facilitate testing. The focus of this thesis is

to demonstrate the incorporation of additional circuitry

within the framework of the design in order to increase

testability. Testability can be defined as the capability to

5



examine whether an object is "fault-free". We achieve

testability through increasing the controllability and

observability of a circuit.

The goal in testing is not necessarily to discover the

exact physical failures, often merely detecting the existence

of those failures is enough, since it may be that the

location of the fault is not necessarily important. In order

to detect a fault within a circuit, a sequence of test

patters (vectors) is applied to the circuit and the results

are compared with those known to belong to a good circuit.

Any difference implies that fault(s) are detected by the

test pattern. The total number of faults that can be

detected as compared to the total number of possible faults

is the fault coverage. Physical failures are due to either

manufacturing defects or wear-out in the field. Failures

occurring during manufacture might include faulty

transistors, breaks in lines at some level (polysilicon,

metal, diffusion, etc.), and shorts between levels and among

levels. Devices in the region of a failure will also be

affected. Alignment errors, mask failures, and problems with

the lithographic techniques vital to the successful

manufacture of a VLSI circuit all contribute to physical

failure. They result in pinholes in the oxide, faulty

contacts, and defective devices. Improper handling can

result in input gate breakdown due to static electricity.

Moisture in the packaging of the circuit can lead to failure.
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Long term failures result from breaks in lines and shorts

between lines. The aluminum metal can start to corrode.

High current densities in thin wires can result in metal

migration. As the technology ages and existing problems are

corrected, new ones will evolve and this further complicates

the generation of accurate fault models.

A fault model is used to describe the effect of a

physical failure on the performance of the device. A stuck-

at fault model describes the effect of a physical failure

that results in the inputs or outputs of logic gates being

permanently stuck at logic 0 or 1. A bridging fault model

describes shorts between lines at the logic level of the

circuit. There are also stuck-open fault models. Many

physical failures can be described by the single stuck-at

fault model. There are also multiple stuck-at fault models.

Figure 1 shows a simple CMOS inverter constructed of a p-

channel transistor and an n-channel transistor. A logic 1 at

the input causes the n-channel transistor to conduct bringing

the output close to ground or 0. A logic 0 causes the p-

channel transistor to conduct bringing the output to be

"pulled-up" to a VDD or logic 1. If the inverter is faulty

(i.e., has an open line, short between lines, or a failed

transistor) what can happen? If the input is shorted to

ground (0) then the gate output is permanently at logic 1,

the p-channel transistor is always on. The same thing

happens if there is a break in the line at A, once any
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residual charge has leaked out of the p-channel transistor.

If the line is broken at B, the input of a logic 0 will cause

the expected output. However, if the input is at logic 1,

the p-channel transistor will turn off, but since the line is

broken, the n-channel transistor will never turn on and the

output will remain at a logic 1 for a period of time

dependent on the leakage currents, usually milliseconds. If

a constant stream of data is being input to the device, the

output will look like a steady logic 1, hence stuck-at-one.

A more complex fault will result if one of the

transistors has failed. If the n-channel transistor, for

example, were to fail permanently in the logic 1 state, a

logic 1 applied to the input would not result in any error.

If, however, a logic 0 were applied, both transistors would

conduct, leaving the output at some intermediate value

between VDD and 0.
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VDD

p-channel

output
In-channel

Figure 1. CMOS Inverter Fault Model

Consider the simple NOR gate shown in Figure 2. If there

is a break at point C just before the n-channel transistor,

the output should normally be logic 0 for A equal to logic 0

and B equal to logic 1. As a result of the failure at C,

there is no path for either VSS or VDD to the output.

Consequently, the circuit is floating and retains its

previous value. The output can be forced to logic 0 by

setting A to logic 1 and to logic 1 by setting both A and B

to logic 0. The point is that the circuit retains the memory

of its previous state and has, therefore, become sequential

in nature. This is the stuck-open fault first described by

R.L. Wadsak in 1978 [Ref. 3]. The failure would be detected

9



by forcing the output to a logic 1 (A,B = 0) and then setting

B to logic 1; the output would not change if there was a

break at C. It is important to note that not all circuits

can be described by the fault models described above. Models

of functional blocks of logic include shorts between lines in

addition to the stuck-at fault models. A short between two

lines results in the two lines having the OR or AND of their

correct values, depending on the technology used in the

device (CMOS technology results in an OR function, NMOS in an

AND function). The goal here is not to provide a

comprehensive guide to faults but to provide a basic

understanding of the effects of some of the physical failures

and how they relate to fault models used in testing.

VDD

output

Figure 2. CMOS NOR Gate Fault Model
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B. SILICON COMPILATION AND ASIC DESIGN

The device used as the basic test platform in this thesis

is a versatile 16-bit correlator. It is a good example of an

application-specific integrated circuit, commonly referred to

as an ASIC. ASICs have become very popular in military

systems due to factors of integration and customization.

Avionics systems, for example, require high integration due

to size and weight constraints. Other systems, such as those

used for communication or targeting, require devices that are

high-performance, very specialized, or both. Traditional

methods of ASIC design include full-custom design, gate-

array circuit design, and standard cell circuit design [Ref.

4:p. 38]. Silicon compilation is the newest method of ASIC

design and allows the designer a higher degree of flexibility

and feedback than previously available. The silicon compiler

works from a high-level description of the circuit that

allows the designer to perform successive design iterations

quickly and efficiently, providing the designer rapid access

to key parameters such as chip size, power consumption, and

timing constraints.

The Genesil silicon compiler used at the Naval

Postgraduate School in Monterey is particularly effective in

that it allows the system designer with little IC design

expertise to quickly and effectively create workable

circuits. Because of the breadth of the compiler library,

including relatively complex circuits such as random access
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memory (RAM), read only memory (ROM), programmable logic

arrays (PLA) , arithmetic logic units (ALU), multipliers, and

a host of less complex circuits such as basic logic gates and

data-path elements, the designer does not have to design at

the transistor level, and in fact, requires little knowledge

of this level of VLSI. Figure 3 shows the configuration of

the Genesil system at NPS.

Seiko Color Hardcoper

-PRINTRONIX Line Printer

Imagen Laser Printer

Seiko Terminal VAX-11/785 System
y -Mbytes Random Access Memory

Genesil Function Set Database 2 450-Mibyte RASI Winchester Disk Drives
280 Mbyte RA61 Winchester Disk Drive
ULTRIX-32 System, Version 2.2

Figure 3. Genesil Silicon Compiler System Configuration
at the Naval Postgraduate School
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There are two previous theses that describe the use of

Genesil [Refs. 5 and 6] and they are highly recommended as

background reading for anyone desiring to use the system.

Once the designer has specified his design, the silicon

compiler synthesizes its layout. Additionally, simulation

models, timing analysis models, and test generation models

can be prepared. The compiler, relying on an extensive set

of layout rules and circuit design knowledge including

information on various fabrication processes, quickly

prepares the layout synthesis. The designer can then perform

logic simulation to verify the functional performance of the

device, timing analysis to determine which paths control the

overall system performance, or test generation with the

automatic test generation (ATG) module to determine fault

coverage. Based on the results of simulation and timing

analysis or after examining a list of key parameters

resulting from the layout compilation, he can change one or

more parameters and quickly examine what effects the changes

have on the performance of the system. He can even go so far

as to change fabrication techniques.

The silicon compiler is effective because it contains all

of the components necessary for circuit design within one

tool. Timing analysis is effective because the system

"really understands" the circuits it is analyzing. The

simulator is effective because each element within the

compiler library has been optimized for simulation. This

13



reduces computation time. Testing analysis is also very

efficient at this level. The use of the ATG feature at the

compiler level reduces testing time and provides the designer

rapid feedback on the degree of controllability and

observability available within the design. As this thesis

will demonstrate, Genesil has enhanced the basic testability

of most designs by making available, within the compiler

library, test latches and sequence generators to specifically

aid in DFT.

C. THESIS GOALS AND ORGANIZATION

As stated above in several places, the primary goal of

this thesis is to demonstrate Design for Testability

strategies as implemented by Genesil. Two primary circuits

will be demonstrated, the shiftable latch (STL) and the

linear feedback shift register (LFSR). Chapter II will

describe the original design of the 16-bit correlator chip on

Genesil and provide a starting point for the collection of

comparison data on simulation, timing and various key

parameters such as chip size and power consumption. Chapter

III will begin by describing the design of the basic

shiftable test latch used in Genesil. The chapter will also

detail the latch's incorporation into the basic correlator to

enhance testability. Chapter IV will describe the linear

feedback shift register used for built-in testing (BIT). It

will also detail the use of the LFSR as a random pattern

generator and show how it contributes to DFT. Chapter V will

14



discuss the Automatic Test Generation module and show how it

contributes to DFT. Chapter VI will present a summary of the

work completed and the conclusions drawn from this research.

The advantages of the test latches will be examined, as well

as the usefulness of the Genesil silicon compiler in the

implementation of the testability strategy. The Appendix

will provide a brief tutorial on the use of the testability

latches.
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II. 16-BIT CORRELATOR TEST CHIP

One of the first research goals was to decide upon a

suitable device upon which to implement the various DFT

strategies. It was not a requirement that a new circuit be

developed; in fact it was desirable to use a chip that had

already been designed. It was, therefore, decided to use an

integrated chip that had been designed by LT William Galinis,

USN and CPT Terence Beck, USA at the Naval Postgraduate

School in Monterey, California [Ref. 7]. The chip is an

implementation of a versatile low-power CMOS 16-bit

correlator. The chip is able to accept data both serially

and in parallel and allows the user to specify which bits

from an incoming data stream are to be compared to a

preloaded reference word. A binary number from 0 to 16 is

returned. A 0 represents a perfectly non-correlated signal

(anti-correlation) and 16 represents a perfectly matched

signal (perfect correlation). Values between 0 and 16

represent a degree of correlation that could be used to

decide acceptance or denial of the input data stream. Such a

device can be used in many applications, ranging from

communications to robotics.

Figure 4 shows the basic correlation equation represented

in discrete form, and Figure 5 shows a basic block diagram of

the correlation function in digital form [Ref. 8:p. 403-404].
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OxynflT = A'. 'x(k 77) -y((k + nz)T7)
k=O

Figure 4. Basic Correlation Equation

Input Data L10 l 1 12 1 nJ

XOR Gates0

Re teenceDataCorrelator

Reeec aa0 12 1 . i

Figure 5. Correlation in Digital Form
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Multiplication is implemented by the exclusive-nor (XNOR)

function which will yield a 1 if the two bits correlate and a

0 if they do not. The values are then summed and the result

is a number between 0 and 16, as explained above.

The correlator circuit used as the test platform is

divided into five basic sections: input, xnorreg, combiner,

adder, and output. Figure 6 shows the basic block outline of

the circuit, as it was designed on Genesil.
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The chip was designed in CMOS technology using 1.0, 2.0 and

3.0 micron technology. Micron design rules, commonly used in

industry, give a micron resolution of the minimum feature

sizes and spacings of the masks required for a given process.

In this case, the micron resolution refers to the minimum

feature size for polysilicon. The VTC-CP1OB fabrication

process (fabline) used primarily for the test chip is a VHSIC

1.0l process (fabline) from VTC Corporation. Other vendors

whose fablines are used by Genesil include Honeywell,

Motorola, National Semiconductor, and General Electric. The

key parameters obtained describing the chip based on several

different fablines are shown in Table 1.

TABLE 1
COMPARISON OF FABRICATION TECHNIQUES

FABLINE VTC-CP1OB AMI-CT20A GEN-CN30A

AREA (sq.mils) 32695.9 57330.1 111153.3

CORE AREA 17691.5 33987.4 67760.7

AREA PER TRANSISTOR
(sq. mils) 8.681864 15.043322 29.166439

POWER DISSIPATION
(milliwatts @ 61.51 75.37 100.19
5V @ 10 MHz)

20



A. BASIC CORRELATOR CHIP DESIGN

1. Input

The input section or module consists of three identical

modules: the data module (datain), the reference module

(refin), and the mask module (mask-in). Each of the

identical modules is a general purpose shift register

consisting of 16 D flip-flop/multiplexer combinations. The

multiplexers allow the register to be loaded in parallel or

serially. The input to each D flip-flop/multiplexer

combination is the output of the previous combination (see

Figure 7). The signal spcon will control the multiplexer.

The data register contains the input data to be

correlated. The reference register contains the reference

word against which the data register is to be correlated.

The third shift register is the mask register, it serves as

the control for the XNOR register. Placing a "1" in a

particular position in the mask register will cause the

correlation of the same bit positions in the data and

reference registers. A "0" will disable correlation. In

this way, flexibility has been added to the device by

allowing the user to determine which bits to correlate.

Each register has a simple controller that uses phase_b

of the system clock to generate a register clock that

operates the D flip-flop. The controller is made up of an

AND gate with two inputs, phase b of the system clock and a
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control signal supplied from off the chip. The result of the

AND gate is used to clock the D flip-flop on phaseb.

2. XNOR Register

The second section is the XNOR register or xnorreg.

It is a random logic block composed of 16 2-input XNOR gates

and 16 2-input AND gates. The XNOR register (Figure 5)

compares the bits in the data and reference registers. As

explained earlier, this corresponds to the multiplication of

the two correlation terms. The output of the XNOR register

will be a "1" in each bit position where the bits match and a

"0" in each position where they do not match or are disabled.

The output of the XNOR gate is controlled by the mask

register as indicated in Figure 8.
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Parallel Output

Parallel Input ToNxXtg

Serial Input (Serial Input)

Serial/Parallel
Control

Figure 7. General Purpose Shift Register

XNOR
Data Input -

Reference Input - j A'NjD Correlated Output
(to Combiner)

Control
firom Mask

Figure 8. XNOR Register Block

23



3. Combiner

The combiner module consists of four identical

combiner blocks which take 4 inputs from the XNOR register

and produce a 3-bit binary-coded decimal (BCD) digit. The

logic representation of one of the combiner blocks is shown

in Figure 9.

4. Adder

The adder section takes the 4 3-bit BCD digits and

adds them together. The result is a 5-bit BCD number with

the 5th bit being the carry-out bit of the 2nd stage adder.

This block is shown in Figure 10.
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5. Output

The output section of the correlator chip merely

consists of a latch circuit made from AND gates. The outputs

are made active when a control input, OUTCON, is high. The

purpose of this section is to ensure that the output is not

available until the input data has settled and is correlated

properly.

B. TIMING AND SIMULATION

Genesil provides an efficient environment for timing

analysis and simulation. Timing analysis and simulation are

run independently of each other thereby increasing the speed

of each process. This allows the designer to rapidly

evaluate design alternatives.

The Genesil timing analyzer provides timing information

based on the physical layout and fabrication technique chosen

for the design. After completion of the analysis, a series

of reports are produced that provide detailed information on

o Speed at which the object under analysis will run

o Paths that limit the clock frequency

o Duty-cycle (phase high time) constraints

o Input setup and hold times

o Output delays

o Setup and hold times and signal delays for any internal

nodes

o Path delays between internal nodes [Ref. 9:p. 1-1).
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Genesil uses a two-phase clocking scheme as the timing

reference for all clocked devices. It derives the timing

characteristics and constraints of the design from switch-

level timing models based on the physical design as mentioned

above.

Table 2 provides a comparison of the timing information

obtained from the Clock Report for each of the various

fabrication techniques examined. The Clock Report provides

detailed information showing the maximum frequency and the

duty cycle limitations of the design that has been analyzed.

The timing algorithm reports the symmetric cycle time as the

minimum cycle time or twice the longest phase time minus a

clock delay calculation, whichever is larger [Ref. 9:p. 4.5].

As indicated in the table, the smaller the fabrication size,

the faster the cycle time. Using the VTC-CP1OB fabrication

technique (in CMOS), the correlator has been analyzed to

operate at a maximum of approximately 31.4 MHz. As the

fabrication techniques grow larger, the circuit slows to

approximately 20.7 MHz.

The Genesil Simulator provides the designer with quick

access to the design in order to test design changes or

verify functionality. The goal of the simulation is to

en-sure that the design implementation and the actual layout

generated by Genesil work as intended. To achieve this goal,

th- sirillator provides two levels of simulation. The first
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TABLE 2
COMPARISON OF TIMING VALUES

FABLINE VTC-CP10B AMI-CT20A GEN-CN30A

PHASE 1 HIGH (ns) 1.9 3.2 6

PHASE 2 HIGH (ns) 15.2 23.6 30.7

MINIMUM CYCLE TIME
(ns) 31.8 49.7 65.8

SYMMETRIC CYCLE TIME
(ns) 31.8 49.7 65.8

level of simulation is performed with functional models

independent of the technology chosen or design layout.

This simulation provides a functional check on the

operation of the circuit and is based strictly on circuit

design and changes in input signals. This functional

simulation uses a demand-evaluation algorithm. This

algorithm simulates only the minimum amount of logic required

to generate a signal value. The user specifies which value

is to be checked and then advances time across a clock edge.

Requesting a signal value generates the demand that the

simulator check that particular net and advancing the clock

generates a demand that functional models dependent on the

clock edge update and check their internal states. This

algorithm runs faster than an event-driven simulation and

requires less memory, hence it is particularly suited to

functional simulation and iterative checking of design

variations.
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Once the designer has verified the correct operation of

the design, he can move to the next level of simulation. The

second level involves the generation of switch-level models

that account for the specific technology and layout chosen

for the design. The switch-level model is implemented by an

event-driven algorithm. This algorithm requires timing

information provided by the Genesil timing analyzer. The

timing analysis is dependent on process and layout, therefore

the switch-level simulation provides an actual simulation of

the physical circuit. Signal changes ripple through the

design and may change many times before settling into a

steady state. Because the signals may change a number of

times before settling and many signals are not used at a

particular time, the event-driven algorithm uses more memory

and is much slower than the demand-evaluation algorithm. If

everything is in order, the switch-level simulation should

run correctly for the same set of vectors used for the

functional simulation. If not, the errors can be traced

using special GSLMENU commands and, if necessary, additional

test vectors can be created to provide additional

initialization. All major sections of the correlator chip

were simulated on both levels.

The simulator provides the user with both interactive and

batch simulation. Interactive control allows the user to

directly stimulate each input and manually advance time.

This is ideally suited for verifying functions quickly.
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However, it requires that the designer check each output

individually to ensure that it is correct. An example of

interactive simulation is shown in Figure 11. In this

example a value is loaded into the data register by binding

the values of the input pins, par(l5.0], to a binary value of

0111011011101100. This value is then loaded into the data

register by advancing the clock one cycle and compared to a

value in the reference register, which has already been

initialized to a value of 01010101010l0101. The output

value, seen on coutr4:0], is 01000 which indicates that there

were eight matches in the comparison between the value in the

data register and the reference register. Manual simulation

used in conjunction with the traceobj command will generate a

test vector f ile that can be used later to repeat the same

sequence of tests.

CORRELATORSIMULATION

TIMEPNT par dfout rfout cout
-1 zzzzzzzzzzzzzzzz iiiiiiiiiiiiiiii iiiiiIiiiiiiiiiii iii
-1 HHHHHHHHHHHHHHHH iiiiiiiiiiiiiiii iiiiiiiiiiiiiiii iiiii
0 HHHHHHHHHHHHHHHH iiiiiiiiiiiiiiii iiiiiiiiiliiiii Iiii
10 HHHHHHHHHHHHHHHH iiiiiiiiiiiiiiii iiiiiiiiiiiiiiii iiiii
10 LIILHLHLHiLHLHLIILH iiiiiiiiiiiiiiii iiiiiiiiiiiiiiii iii
20 LHLHL~iLHLHLIILHLH iiiiiiiiiiiiiiii 0101010101010101 iiiii
20 L1H-HLHHLH11HLHHLL iiiiiiiiiiiiiiii 0101010101010101 iii
30 LIIHHLH[ILIHHLHHLL 0111011011101100 0101010101010101 01000
40 *111HIH~ttLHL0101010 000000000*01000

Figure 11. Interactive Simulation of Correlator Chip
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Batch simulation uses check functions and test vector

files. Test vector files and check functions run faster than

the interactive simulation, will generate an error message if

the expected result does not agree with the actual result,

and provide a standard set of vectors for simulation. Test

vectors, in addition to being created with the traceobj

command as explained above, can also be written using MASM, a

macro-assembler that allows the user to define and use an

assembly language customized for the circuit to be simulated

[Ref. 10:p. 5-11]. The file can be written in either source

code or object code. Examples of each are shown in Figure

12. Figure 12a is the object code written to test the

combinO section of the combiner module. The object code

consists of a heading that includes the inputs and outputs of

the circuit to be simulated and a data that lists the

input vectors and output vectors. A simulation that produces

an output other than that specified in the vector file will

generate an error. Figure 12b shows the source code written

to simulate the parallel operation of the data-in module.

The source code follows a specific format that allows the

designer to write the functions that he desires to simulate.

An object code file is then generated and the circuit is

simulated as described above.
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CODEFILE
INPUTS xout[3:01;
OUTPUTS clout{2!0];
CODING(ROM)
@5 (0000 >000;
@10 (001 >00];
@15 (0010 >01;

@25 <0100 >001;
@30 (0101 >010;
@35 (0110 >010;

@40 (0111 >011;

(d15 <000 >001;
50 (1001 >010;
55 (1010 >010;
S60 (1011 >011;
65 (1100 >010;
70 (1101 >011;
75 (1110 >011;

I80 (1111 >100;
END

(a)

$define Sig Signal

$define In Input
$define Out Output
$define Pos Position
$define E Expression
$define rep4(a) a a a a

Fields I
par (Pos = 0, In,tength=16 ) [1
ser 0 (Pos - 16, In,Lenqth=l, Sticky) (I
spcon (Pos - 17, In,Length-1, Sticky) (I
datcon (Pos = 1C, Ii,,Length~l, Sticky) }

/* Output Fields */

dfout (Pos - 0, Out,Length-16, Shift - 10) {)

Templates (
serial - spcon\l;
parallel - sp con\O;
on = datcon\l;

off datcon\O;
load H par\@O, dfout\@O;

Lineaction:: E(.-.+10), E(temp++);

Data (
/*parallel operation*/
E(temp - 0), parallel, on,
load Itempi;
load [tempi;
load (tempi;
load (tempi;
load itemp<(l];
rep4(rep4(rep4(load [temp<((l];)))
rep4(rep4(load (temp<(21;))
I
/*end of source file*/

(b)

Figure 12. Simulation Techniques Using Object
and Source Code
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Check functions are written in a simulation language

called GENIE. GENIE (Genesil Interface Extension) is an

interpretive language used as a command language in

application programs. It has many similarities to C, using

similar syntax and many of the same control structures [Ref.

11]. GENIE is an alternative to using test vectors. The

test vectors generated by the check functions are captured by

the traceobj command. An example of a check function is

given in Figure 13. This function was used to verify the

operation of the adder block.

/* THIS FILE WILL TEST THE ADDER MODULE */
func addtest [

vars a b c d res
for a 0 4[

for b 0 4
for c 0 4 [

for d 0 4
sn clout @a
sn c2out @b
sn c3out (C
sn c4out @d
set res (+ a b c d)
checkatr 10 out @res
I

Figure 13. Check Function Simulation of Adder Block
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The Genesil VLSI implementation of the correlator chip

using the 1g technology resulted in a chip with a total area

of 32,695.9 square mils and a total power dissipation of

61.151 milliwatts. This could be compared with the MOSIS 3A

implementation of the correlator chip which had a total area

of 48,484.096 square mils. As expected, the Genesil

implementation of the chip is smaller, mainly due to the

smaller feature size. However, the Genesil implementation of

the 2g feature size is larger than the MOSIS chip, an area of

73,038 square mils compared to 48,484.9 square mils. This

demonstrates one of the disadvantages of silicon compilation,

the design might not be optimized for size. A full custom

tool, such as MAGIC, can generally produce a smaller design

if desired. A breakdown of some of the key parameters of the

various components of the correlator chip is shown in Table

3. A routing diagram showing the layout of the various

modules and blocks that make up the correlator chip is shown

in Figure 14.
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TABLE 3
KEY PARAMETERS FOR CORRELATOR CHIP

# OF AREA POWER DISSIPATION

MODULE TYPE TRANS. (sq. mils) (mW @ 5V @ 10 MHz

CORLATCHIP1 CHIP 3766 32695.9 61.51

ADDER RANDOMLOGIC 300 169.1 1.9

CLOCK PAD 24 582.2 4.8

COMBINER MODULE 480 439.0 3.44

DATAIN MODULE 742 2464.8 6.25

DATAOUT PAD 90 742.4 21.4

DATCON PAD 15 148.6 .37

INPUT PAD 240 2375.5 5.9

MASKIN MODULE 742 2496.0 6.25

MSKCON PAD 15 148.6 .37

OUTCON PAD 15 148.6 .37

OUTPUT RANDOMLOGIC 30 16.5 .26

REFCON PAD 15 148.6 .37

REFIN MODULE 742 2432.0 6.25

SERDATIN PAD 15 148.6 .37

SERMSKIN PAD 15 148.6 .37

SERREFIN PAD 15 148.6 .37

SPCON PAD 15 148.6 .37

XNORREG RANDOMLOGIC 256 123.3 2.1

VDD PAD 0 148.6 0

VSS PAD 0 148.6 0
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III. SCANPATH DESIGN FOR TESTABILITY STRATEGY

A. SCANPATH DESIGN

The first Design for Testability strategy investigated

was the Scanpath technique. The Scanpath technique strives

to enhance the observability and controllability of internal

nodes that are inaccessible from the periphery of the system.

As mentioned earlier, observability refers to the primary

outputs of the design and controllability refers to the ease

by which a specific signal can be produced at some internal

node by applying a signal to the primary outputs of the

design. To increase the observability and controllability

scanpaths are added to the design. The scanpaths serve to

partition the design into smaller subsystems that are

separately more testable than the design as a whole. Figure

15 shows how a generic circuit might be partitioned by a

scanpath into individually testable units [Ref 12:p. 374].

The Genesil silicon compiler implements the scanpath

using the shiftable test latch in its basic configuration.

The STL consists of a data latch in parallel with two serial

register latches. The designer builds registers of STLs that

are connected via serial inputs and serial outputs.

Consequently, the number of peripheral connections are kept

at a minimum; only the serial input of the first register and

the serial output of the last register are required for

vector manipulation.
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Figure 15. Generic Circuit with Scanpath

The STL enhances the controllability of the design by

overriding the contents of the data latch. Internal nodes

can be set to arbitrary patterns by shifting a user-defined

test vector into the data latch via the serial register. The

test vector might be an arbitrary set of bits or a specific

vector created by an automatic test vector generation
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program. In this thesis, the Genesil Automatic Test

Generation (ATG) program was used to generate and evaluate

test vectors and fault coverage. The ATG program is

discussed in Chapter 5. The STL enhances observability by

capturing the states of the internal nodes and shifting the

resulting patterns out of the circuits via the serial

register.

B. THE SHIFTABLE TEST LATCH

The basic STL consists of three latches and five control

gates as shown in Figure 16. The latch labeled D forms the

data latch and the latches labeled A, B, F, S, and LOAD

govern the flow of data between the data latch and the serial

register. To build a test register, the STL's are cascaded.

The TOUT connection of each STL is routed to the TIN

connection of the next-most-significant STL. By connecting

strings of registers together and combining the control

signals for each separate test register, a large number of

test latches can be used with a minimum overhead in

additional pad requirements and external circuitry. Only the

TIN of the first STL, the TOUT of the last STL, and the

control signals require pads.
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Figure 16. Shiftable Test Latch

The basic STL performs different functions in response to

the control inputs. During normal operation, the data latch

(Latch D) serves as a storage element and the LOAD signal is

driven by phaseb of the systems clock. The force operation

requires that the test vector be shifted serially into the

shift register section (Latches Sl and S2). It is then

loaded in parallel into the data latch section and applied to
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the circuit. The sample operation samples the state of the

data latch. Its contents are loaded in parallel into the

shift register and then shifted serially out of the circuit.

The shift function shifts data in the shift register one bit

position. There is also a swap function. The swap function

allows data to be exchanged between the data latch and the

shift register. This allows a test vector to be shifted into

a circuit as sampled data is shifted out [Ref. 13:pp. 15.2-

15.5].

There are three different implementations of the STL when

it is created as random logic block. Random logic blocks are

used for simple small-scale logic functions. In the

unclocked implementation, the control signals are driven by

external strobes that are usually generated off-chip. As a

result, the designer must ensure that the control signals are

generated in the correct sequence and are properly timed.

The data latch is driven by a two-phase system clock. The

second implementation is the globally clocked model. The

control signals mentioned above are combined by additional

logic within the block into two signals named M1 and M2.

These two signals produce properly timed sequences of the

control signals A, B, F, and S. The timing is defined

relative to the system clock used to load the data latch.

The final implementation of the STL is the locally clocked

implementation. This model uses a local two-phase clock that

is independent of the system clock. The control signals M1
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and M2 are defined relative to the local clock and are

derived as mentioned above. The local clock might be

generated off-chip or by additional circuitry on the chip.

The testability latches can also be configured using the

parallel datapath block available in Genesil. Parallel

datapaths are blocks that are specifically tailored for

parallel data and control operations such as arithmetic

functions and register-file address generation [Ref. 14:p.

1.1]. The same implementations are available in the parallel

datapath as were available in the random logic blocks

discussed above. There are two additional DFT

configurations, generator and signature analyzer, available

as parallel datapaths. They will be discussed in Chapter IV.

Table 4 shows a comparison of area, number of

transistors, and power dissipation for a 16-bit testability

register using each method of implementation. As can be seen

from the table, the clocked modes of operation are larger due

to the addition of the control circuitry. Also note that the

parallel datapath implementations are much larger than the

random logic implementations of the testability registers.

Parallel datapath blocks require the addition of special

interface blocks on input and output. Figure 17 shows the

VLSI layout of a 16-bit globally clocked test latch. The

control section is on the left side of the layout and the 16

STLs are designed to fit together side by side. Contrast

this to Figure 18 which shows the layout of a 16-bit globally
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clocked test latch implemented as a parallel datapath. The

blocks in the datapath are arranged in a horizontal row with

each block of equal height. The height is determined by the

width of the datapath which, in this case, is 16. One of the

drawbacks of silicon compilation as a design methodology is

that the designer has no control over the layout at a level

lower than the block level. Once the designer has specified

the object type and completed the necessary forms, the layout

of the block is done automatically.

TABLE 4
16-BIT TESTABILITY REGISTER COMPARISON

IMPLEMENTATION AREA # OF POWER DISSIPATION
(sq. mils) TRANSISTORS (mW @ 5V @ 10MHz)

UNCLOCKED RANDOM
LOGIC 245.8 449 3.3

LOCALLY CLOCKED
RANDOM LOGIC 257.5 511 3.2

GLOBALLY CLOCKED
RANDOM LOGIC 257.5 511 3.2

UNCLOCKED PARALLEL
DATAPATH 425.9 617 4.2

LOCALLY CLOCKED
PARALLEL DATAPATH 429.6 679 4.4

GLOBALLY CLOCKED
PARALLEL DATAPATH 429.6 679 4.4
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Figure 18. 16-Bit Parallel Datapath Test Register
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C. IMPLEMENTING SCANPATH DFT INTO THE CORRELATOR CHTP

The initial DFT approach using Scanpaths was to build a

16-bit register out of STLs and break up the datapath in the

correlator chip by putting one or more registers within the

data flow. It was quickly decided that the chip was not

complex enough to require more than one such register. The

problem then became where to place the testability register

in order to most increase the observability and

controllability of the design.

In order to develop some basis for deciding where to

place the register, the fault coverage of the correlator

without DFT was determined. The ATG program evaluates the

testability of a design and generates a specific set of test

vectors designed to provide the optimum amount of fault

coverage. Once the set of vectors has been determined, the

set may be saved and after the design has been returned from

the manufacturer, the test vectors can be used to detect any

physical flaws.

The initial fault coverage results for the basic

correlator design without any DFT is shown in Table 5. The

fault coverage was 92.47% for the entire circuit. The Sdummy

block is a dummy module used by the ATG program to contain

any artificial constructs it creates to carry out the fault

evaluation. In order to achieve the specified fault

coverage, 605 test vectors were generated. This took a total

CPU time of 14 minutes and 28 seconds. It was discovered
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that continuing runs of longer time periods did not yield

higher coverage. The ATG program will run for a specified

amount of time or until achieving a specified degree of fault

coverage. There are some internal limits in the program that

will cause it to terminate testing but, generally, programs

can run for many hours. This means that in order for a fault

to be detected, assuming it is one of the faults covered, the

set of test vectors will have to be applied, one at a time,

to the circuit. If that fault exists, it will be detected

when the output vectors are compared to the known correct

test results. If one or more of the output vectors do not

agree, the fault is detected. The location of the fault is

not determined, only its existence.
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TABLE 5
ATG FAULT COVERAGE RESULTS FOR BASIC CORRELATOR DESIGN

FAULT

DEVICE MODULE VECTORS TESTS COVERAGE %

BASIC CORRELATOR 605 1215 of 1314 92.47

ADDER 154 of 170 90.59

COMBINER 160 of 192 83.33

DATA IN 242 of 259 93.44

MASKIN 242 of 259 93.44

OUTPUT 15 of 15 100

REFIN 242 of 259 93.44

XNORREG 112 of 112 100

$DUMMY 48 of 48 100

Based on the initial set of results, the test register

was placed between the xnorreg and the combiner module as

shown in Figure 19. It is important to point out that the

only analysis done was to look at the information given in

Table 5 and determine that the combiner/adder section of the

design seemed to be the least testable and a register placed

at the input to this section of the design might help to

increase the testability. As can be seen in the test results

shown in Table 6, the inclusion of the register in this

location did not increase the testability of the design. It

did, however, reduce the number of test vectors required to

get the same amount of coverage. As a result, a more

detailed analysis was done using the ATG program.
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TABLE 6
THE ATG FAULT COVERAGE RESULTS FOR SCAN DESIGN #1

FAULT

DEVICE MODULE VECTORS TESTS COVERAGE %

SCAN DESIGN #1 207 1255 of 1354 92.68

ADDER 154 of 170 90.59

COMBINER 160 of 192 83.33

DATAIN 242 of 259 93.44

MASKIN 242 of 259 93.44

OUTPUT 15 of 15 100

REFIN 242 of 259 93.44

XNORREG 112 of 112 100

$DUMMY 88 of 88 100

The ATG program, via the ANALYZE command, provides

specific information about the areas of the circuit that were

or were not tested. The circuits can be determined

hierarchically to determine which blocks had good and poor

coverage and to determine which specific tests were or were

not instantiated [Ref. 15:p. 5.2]. A fault is said to be

instantiated if it can be observed at the primary outputs of

the circuit.

Figure 20 shows one of the combiner blocks discussed in

Chapter 2. By using the ANALYZE function after a new set of

test vectors was generated reflecting the addition of the

testability register, it was discovered that a certain test

pattern, in this case a logic 1 applied at both inrts, was
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not instantiated at the AND gate labeled AND5. The reason is

that the test vector required at the primary inputs to

produce the test pattern at the AND gate also produced a

logic 1 input to the OR gate labeled ORO. The logic 1

overrides the signal coming from the AND gate. The result is

that the specific AND test is never instantiated and the

fault cannot be determined. The nodes are controllable and

can be set to the required pattern but the desired result, a

logic 0 for a fault-free circuit and a logic 1 for a faulty

circuit, cannot be observed at the primary outputs due to the

overriding logic 1 at the OR gate.

I
XORI ANOS XORU

AMOS ANO XOR4

XORO AN03 XOR3 I OPI

ANO0C AP402 XORR ORO~

Figure 20. Combiner Block
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In order to make the combiner module more observable, it

was redesigned so that the OR gate mentioned above could be

made more controllable. The combiner module was split into

two parts. The split is shown by the dotted line in Figure

20. The new DFT design is shown in Figure 21 and the fault

coverage results are shown in Table 7. The table compares

the fault coverage for each of the scan designs mentioned and

the basic correlator chip without any DFT. Note that

although the overall fault coverage only increased by 2.6%,

the adder and combiner modules have increased by 5.88% and

16.67%, respectively. The design is fairly small, so the

initial fault coverage is expected to be high. The

significant point here is the large increase in fault

coverage in the adder/combiner area brought about by

redesigning the circuit to incorporate DFT. Without the

addition of the test vector register, the fault coverage

could not be increased. This is important for critical

designs where failure in the field, if not detected, could be

catastrophic. Additionally, only 133 test vectors were

generated. This is a reduction of 78% from the design

without any DFT. Extrapolate the savings into reduced test

time and increased efficiency of testing and the use of DFT

becomes significant.

The tradeoff in the above design is that a 32-bit test

register is now required. The STL can only be expanded to 16

bits in random logic so two 16-bit registers have to be
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combined or a single 32-bit register can be constructed using

the parallel datapath block. Some of the key parameters for

these options are shown in Table 8.
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TABLE 7
FAULT COVERAGE COMPARISON FOR SCAN DESIGNS

rAULT

DEVICE MODULE VECTORS TESTS COVERAGE %

BASIC CORRELATOR 605 1215 of 1314 92.47

ADDER 154 of 170 90.59

COMBINER 160 of 192 83.33

DATA IN 242 of 259 93.44

MASKIN 242 of 259 93.44

OUTPUT 15 of 15 100

REFIN 242 of 259 93.44

XNORREG 112 of 112 100

$DUMMY 48 of 48 100

SCAN DESIGN #1 207 1255 of 1354 92.68

ADDER 154 of 170 90.59

COMBINER 160 of 192 83.33

DATAIN 242 of 259 93.44

MASKIN 242 of 259 93.44

OUTPUT 15 of 15 100

REFIN 242 of 259 93.44

XNORREG 112 of 112 100

$DUMMY 88 of 88 100
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TABLE 7 (cont.)

SCAN DESIGN #2 133 1310 of 1378 95.07

ADDER 164 of 170 96.47

COMBINER 1 112 of 112 100

COMBINER 2 80 OF 80 100

DATA IN 242 of 259 93.44

MASKIN 242 of 259 93.44

OUTPUT 15 of 15 100

REFIN 242 of 259 93.44

XNORREG 112 of 112 100

$DUMMY 101 OF 112 90.18

TABLE 8
32-BIT REGISTER COMPARISON

AREA # OF POWER DISSIPATION
(sq. mils) TRANSACTIONS (mW @ 5V @ 10MHz)

PARALLEL
DATAPATH 769.9 1271 8.1

RANDOM
LOGIC 569.3 1068 6.3
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D. STL AND CLOCKING OPTIONS

Genesil uses two-phase non-overlapping clocks derived

from a single system clock as the reference for all clocked

devices that are logically associated with that system clock

[Ref. 9:p. 2.1]. The STL, as described above, can be either

clocked by the global system clock or the serial register

latches can be clocked by a separate local clock. Separating

the clocks makes it possible to halt the normal operation of

the chip and scan out the current values of the nodes covered

by the STLs. The use of a local clock also allows test

vectors to be scanned in more rapidly, thereby reducing time

lost to testing. Table 9 shows the difference in clock times

for globally and locally clocked DFT designs. Locally

clocked STLs provide better performance but will require

additional logic circuitry to produce the two test clock

phases. If the clock signals are produced on-chip, a single

additional input must be provided and the two phases can be

produced with a clock processor block. The control signals

are identical for both globally and locally clocked STLs.
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TABLE 9
COMPARISON OF CYCLE TIMES FOR STL IMPLEMENTATION

OF 16-BIT TEST REGISTER

MINIMUM SYMMETRIC
DEVICE CLOCK CYCLE TIME CYCLE TIME

BASIC
CORRELATOR SYSTEM 11.1 ns 16.3 ns

WITH GLOBALLY
CLOCKED STL SYSTEM 23.0 ns 23.0 ns

WITH LOCALLY SYSTEM 16.1 ns 16.3 ns

CLOCKED STL LOCAL 12.1 ns 12.2 ns
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IV. BUILT-IN TEST DESIGN FOR TESTABILITY STRATEGY

A. BUILT-IN TEST DESIGN

The second Design for Testability strategy investigated

was the Built-in Test (BIT) technique. The Scanpath

technique discussed in the previous chapter was aimed at

enhancing the controllability and observability of the

internal nodes of the circuit. The test vectors used to

check the circuit are generated by a test vector generation

program and then applied and checked by separate test

equipment. As the designer requires more detailed testing

and the circuit to be tested become more complex, the cost of

testing increases. Some other problems associated with using

the Scanpath DFT technique include the amount of time

required to generate the set of vectors, the size of the set

of test vectors becoming too large to be easily handled by

the test equipment, and the time taken to apply each vector

[Ref. 16:p. 21].

Built-in test techniques attempt to facilitate testing by

moving some or all of the test functions onto the chip. The

test vectors are generated and can also be analyzed by

special circuitry included as part of the functional design.

The devices used in this part of the research include a

linear feedback shift register (LFSR) to generate the test

vectors and a signature analyzer to evaluate the response.

The BIT technique has some of the same drawbacks as does the
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Scanpath technique -- they both take up some additional area

and add some path delay. The compensation is that an outside

tester is no longer required and testing time is reduced.

Another advantage to Built-in Test is that the circuit can be

tested at speed of normal operation and while the circuit is

in normal use.

The linear feedback shift register and signature analyzer

are implemented as parallel datapath modules by the Genesil

silicon compiler. The testability registers can be

configured as LFSRs or signature analyzers or both. The STL

signature cunfiguration uses the same circuitry and does the

same work as the LFSR configuration. It also contains

additional logic that allows the designer to combine the

sequence of values received from other blocks within the same

dataflow and create a signature that is unique to that

sequence of values. If the signature does not agree with a

correct value (determined beforehand via simulation) a fault

has been detected. Figure 22a and 22b show the layout of a

16-bit generator and signature parallel datapath. Note the

added dimensions of the control section, located at the

bottom of the module, of the signature block. This is due to

the added circuitry. Also it is easy to determine the

vertical nature of the parallel datapath layout. The control

section is at the bottom and top, the datapath consisting of

the 16 STLs is located in the center, and the interfaces are

arranged on the right and left sides of the module. Table 10
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shows a comparison of 16-bit test register implementation

using generator and signature configurations.

,

C!I

Figure 22a. 16-Bit Generator Layout
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Figure 22b. 16-Bit Signature Layout
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TABLE 10
16-BIT TEST REGISTER COMPARISON OF GENERATOR AND

ANALYZER CONFIGURATION

IMPLEMENTATION AREA # OF POWER DISSIPATION
(sq. mils) TRANSISTORS (mW @ 5V @ 10 MHz)

VECTOR
GENERATOR 470.0 679 4.3

SIGNATURE
ANALYZER 509.4 835 43.6

Figure 23 shows the general concept behind the DFT

strategy implementing Built-in Test. In the first part of

the test the STL register on the left acts as a LFSR and

generates a string of vectors that become tests for logic

block 1. The results of the tests are fed through the second

STL register which is configured as a signature analyzer.

After a certain number of tests have been generated, the

signature can be shifted out of the STL register and checked

for any faults. Then, the STLs can be reconfigured via the

control inputs so that their configurations are reversed. In

the second part of the test, the test patterns are generated

by the second STL register, fed through logic block 2 and the

resulting signature is produced by the first STL register.

[Ref. 17:pp. 392-393)
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Logic #1 L - -wLgc#

GENERTOR SIGNATURE

(a)

MLogic #i ED Logic #2

SIGNATURE GENERATOR

(b)

Figure 23. General DFT Built-in Test Strategy

B. LINEAR FEEDBACK SHIFT REGISTERS

The set of test vectors produced by the LFSR, as

implemented by Genesil, is a set of pseudorandom vectors.

They are called pseudorandom because the vector set is

produced by a known circuit, however, the set exhibits many

properties of random signals. These characteristics are

given a detailed discussion in Golumb [Ref. 18). The LFSR

consists of a series of delay elements such as flip-flops

with no external inputs and feedback paths through XOR gates

as shown in Figure 24. The R input determines whether data

is shifted into the lowest significant bit from the serial

input of the XOR feedback path.
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Figure 24. Genesil LFSR Configuration
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The arrangement of the XOR gates within the feedback is

determined by a constant called the LFSR polynomial. This

constant determines the length of the LFSR pseudorandom

vector sequence. For most testing applications, the set of

test vectors should be as long as possible. The longest

sequence, called a maximal length sequence, results if the

constant determining the feedback chain is a primitive

polynomial. In general, the maximal length sequence of an n-

bit LFSR contains 2n - 1 vectors [Ref. 2:p. 134]. Peterson

[Ref. 19] provides extensive coverage of linear feedback

shift registers and vector sequences. Genesil provides the

designer with a default polynomial to meet the criteria for

maximal length sequences for datapath widths from 4 to 34

bits wide. The designer can change the value of the

polynomial if an application requires a specific polynomial.

Figure 25 shows the Genesil form for the generator

function of a 4-bit test register. The polynomial constant

is entered as a hexadecimal number. In the LFSR the most

significant bit always starts the chain of XOR gates so the

highest order coefficient is always one. The lowest bit

always feeds into the multiplexer controlled by the R input

and is also always one [Ref. 14:p. 24.14]. Figure 26 shows

the feedback chain for the 4-bit LFSR and the sequence of

values generated by the random function.
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Genesil Version v7.1 -- Mon Feb 27 21:03:26 1989
Parallel Datapath: gendavid/davidson/lfsrl6 DATAPATH Block Editor

TSTLAT Functional Specification
Block #1

Name: >tstlatch
Phase X: PHASE A PHASE B
Shift register: BASIC GENERATOR SIGNATURE
Control signals: UNCLOCKED LOCAL GLOBAL
Polynomial: > Ox13
Mode: TRANSPARENT GATED
Sample: STDIN 1 STDIN_2

Connectors:
Load: >load (LD)
Tin: >tin (TIN)
Tout: >tout (TOUT)
Ml: >ml (Ml)
M2: >m2 (M2)
M3: >m3 (M3)

Figure 25. LFSR Genesil Form
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tin •FF 1F#2 F- -- t

R

LFSR LFSR
TIMEPOINT OUTPUT TIMEPOINT OUTPUT

0 iiii 10 0110

1 0001 11 1100

2 0011 12 1001

3 0111 13 0010

4 1111 14 0100

5 1110 15 1000

6 1101 16 0001

7 1010 17 0011

8 0101 18 0111

Figure 26. Feedback Chain for 4-Bit LFSR and Random Vectors

C. SIGNATURE ANALYZERS

The signature analyzer uses the LFSR principles in its

operation. In the Genesil implementation, the signature

analyzer is essentially an LFSR with its input equal to the

output of the circuit or subcircuit to be tested. The

particular technique employed is that of a parallel signature
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analyzer. In this technique, the outputs of the circuit

being tested are connected to the LFSR via XOR gates added

between stages in the test register as well as connecting the

circuit output to the first LFSR stage [Ref. 2:p. 145].

Figure 27 shows the STL signature configuration for an

arbitrary bit position. Note the input mux with additional

control inputs of M4 and MS. In the globally and locally

clocked options the M4 and M5 inputs are generated internally

and the device has the same number of external connections as

Tout Fdbkin

-N D DOtliT

LoadI

Fdbkout

M5
LFALSE

in

Figure 27. STL Signature Configuration
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does the generator function. The XOR gate at the input mux

combines the present data value with the value of the

preceding shift register stage thus producing a bit-wise

checksum value [Ref. 14:p. 24.21].

After a certain number of clock periods, the value in the

data latch is a unique value created by the combination of

output responses and the XOR feedback chain configuration.

If that value differs from the correct value obtained during

simulation tests, a fault has been detected. It is obviously

important that the LFSR generating the test vectors be

intialized to the same starting value for each *est and each

test run for the same number of clock cycles so that the

tests can be repeated. Table 11 shows the inputs and outputs

of a simple 8-bit signature analyzer. Note that the designer

could design a simple comparator or memory to examine any

number of the outputs for a correct response given a certain

number of block cycles, thereby moving the analysis function

completely onto the chip. The input vectors for this test

were produced by an 8-bit LFSR using the default value for

the polynomial constant. Each test was run for 30 clock

cycles. A maximal length sequence for the LFSR will produce

255 vectors.
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TABLE 11
SIGNATURE SIMULATION RESULTS

TIMEPOINT LFSR OUTPUT SIGNATURE ANALYZER OUTPUT

31 1110010 11100100

32 11001000 11100100

33 10010000 11100100

34 00100001 00101100 - SIGNATURE

35 01000010 01000010

64 00110001 00110001

65 01100010 00110001

66 11000101 00110001

67 10001010 01010011 - SIGNATURE

68 00010101 0010101

97 01101110 01101110

98 11011101 01101110

99 10111011 01101110

100 01110111 10110011 - SIGNATURE

101 11101110 1101110
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This technique is also called compact testing because the

output response, after passing through the signature

analyzer, can be reduced to a small number of bits. One

drawback to the signature analysis technique is due to a

phenomenon called aliasing. It is possible for a fault to go

undetected if its output response produces a signature that

is identical to that of a fault-free device. This leads to a

loss of fault coverage. Research on this phenomenon has not

yet led to the discovery of a simple relationship between the

fault coverage and the aliasing phenomenon [Ref. 2 :p. 144].

D. IMPLEMENTING BUILT-IN TEST DFT INTO THE CORRELATOR CHIP

The BIT strategy, as opposed to the Scanpath strategy,

attempts to facilitate testing by placing the test functions

on the chip. Initially, designs were developed that

substituted a LFSR where a test register was incorporated in

the scanpath designs. This is of limited utility because the

LFSR does not produce a custom set of vectors. It requires

many more vectors to get the same amount of fault coverage

that is achieved with the scanpath using a vector set

generated by the ATG program. If the LFSR replaces the test

register located in the interior of the circuit in Scanpath

Designs #1 and #2, it will not provide any greater fault

coverage than did the test registers. The advantages offered

by the LFSR are somewhat diminished because a vector set must

still be generated for the parts of the circuit located in

the front of the LFSR. The LFSR can act as a basic test
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register and capture the results of test vectors applied at

the inputs to the data registers but the substitution of the

LFSR does not enhance the testability of the circuit. The

conclusion drawn is that the LFSR is better placed at the

front of the circuit where it can generate a stream of

vectors at system speed that can be used to test the circuit.

This is the approach taken in implementing the BIT strategy

into the basic correlator chip.

The first BIT design added a 23-bit LFSR after the

primary inputs of the basic correlator chip as shown in

Figure 28. In this position, the LFSR can generate test

vectors that will include the data bits and the various

control inputs. The pseudorandom test vectors propagate

through the circuit and the output responses appear on the

primary outputs. The first design did not use a signature

analyzer.
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When the circuit is to be tested, an initial vector is

loaded into the LFSR. This is called the seed vector and is

used to initialize the random vector generator. The control

inputs are initially set to the sample function discussed in

the previous chapter so that the seed vector placed in the

data latch is shifted into the serial register. The control

inputs are then set to the random function and the LFSR

begins to generate vectors. Table 12 shows a sampling of the

vectors generated by the LFSR and the values appearing on the

output lines.

TABLE 12
SAMPLING OF VECTORS GENERATED BY BIT LFSR

TIMEPNT testin testout cout
1430 LLLLLLLLLLLLLLLLLLLLLLLLH 010010111101010010001110 00000
1440 1LLL JLLLLLLLLLLLLLLLLLLH 100101111010100100011101 00011
1450 1LTLJ.JJJJ,,TTLTLLTIJLLLH 001011110101001000111010 00000
1460 1JLLLTLILJLLLTLLT, TLLLLLLLLLLH 010111101010010001110101 00000
1470 1TTLLLJLLLLLLLLJLLLLLH 101111010100100011101010 00111
1480 LLLLLLLLLLLLLLLLLTLLLLLLH 011110101001000111010101 00000
1490 LLLLLLLLLLJLLLJ-T--LH 111101010010001110101010 00011
1500 1TJJLLJLILLLLTLLJLLLH 111010100100011101010100 00011
1510 _LLLTJJJ,-,LJTLLLLTJJLLLLH 110101001000111010101000 00111
1520 LTJI. L.JLLLLLLLLLLLLLH 101010010001110101010001 00111
1530 1LTJJLLITJLJLTLJLLT.TLT ITTLTLTJLTLLH 010100100011101010100011 00000
1540 TLLTLJ-LTXLTLTLTIJ-TILJT -T_-TLH 101001000111010101000110 00011
1550 1TJTIT T-T,...LLLJLJJLJL-TLH 010010001110101010001101 00000
1560 LJLLLLLLLLL LIJJLLLLH 100100011101010100011011 01001
1570 1,TTLLLTJT,,TJLALL LLLLLLH 001000111010101000110111 00000
1580 _LT.1 LLLJJLLLLLLLLL LH 010001110101010001101110 00000
1590 1JJLLLLI LTJLLLLLLLIiLLH 100011101010100011011100 00000
1600 1_LTJLLLLLLLLLLT,1-TLLJJTLH 000111010101000110111000 00000
i610 *I-JIJJ JI ITTIT TTT-TT-T LH*001110101010001101110000*0000
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The method used to determine the fault coverage with the

LFSR configuration involves the use of both the ATG program

and the simulation program. The circuit is initialized as

discussed above using the simulator and the simulator is then

run for a number of cycles. There is no easy way to

determine how many vectors need to be generated by the LFSR

in order to achieve a certain fault coverage. The output

vectors generated as a result of the applied test vectors is

captured in a vector file using the Genesil traceobj command.

This function, when used during simulation, captures the

simulation and its results in a data file. Once the

simulation is complete, the untraceobj command is used and

all the vectors created during the simulation are placed in a

data file. The newly created data file is then used as an

input file for the ATG program. ATG has a function that

allows the user to specify an input file and fault grade the

vectors in that file.

Table 13 presents the results of a test run using the

LFSR. AS seen in the table, the fault coverage does not

differ significantly from that of the basic correlator. Also

note that the LFSR produced almost four times as many

vectors; 2254 vice 605, as did the ATG program when it was

used to produce fault coverage for the basic circuit. The

designer does not have any control over how many vectors will

need to be generated Ly the LFSR in order to achieve a

certain amount of fault coverage. The process is iterative
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and only after a number of runs differing lengths, can a

judgment be made on how long to make the test sequence. What

is significant is that all of the test vectors were produced

on the chip and applied to the circuit by the LFSR.
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TABLE 13
FAULT COVERAGE COMPARISON

DEVICE MODULE VECTORS TESTS FAULT COVERAGE

CORLATBAS2 605 1215 of 1314 90.47

ADDER 154 of 170 90.59

COMBINER 160 of 192 83.33

DATAIN 242 of 259 93.44

MASKIN 242 of 259 93.44

OUTPUT 15 of 15 100

REFIN 242 of 259 93.44

XNORREG 112 of 112 100

$DUMMY 40 of 48 100

LF3CORLATBAS2 2254 1213 of 1324 91.61

ADDER 152 of 170 89.41

COMBINER 160 of 192 83.33

DATAIN 242 of 259 93.44

MASKIN 242 of 259 93.44

OUTPUT 13 of 15 86.67

REFIN 242 of 259 93.44

XNORREG 112 of 112 100

$DUMMY 50 of 58 86.21
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The second BIT design developed is shown in Figure 29.

The output block has been replaced by a 5-bit signature

analyzer. Any number of the 5 primary outputs can be

examined to determine the presence of a fault. Table 14

presents a sampling of the vectors produced by the LFSR and

the output responses produced by the signature analyzer. The

first group of vectors represent the initialization of the

circuit. By observing the LFSR output the generation of test

vectors can be observed. There is no signature or output at

this point because the vectors might not yet generate

results. The signature output is obtained from the shift

register in the signature analyzer and the output is at the

output of the data latches of the analyzer. The second group

of vectors show continued generation of test vectors and

resultant outputs. The analyzer is in the sample mode of

operation so the values in the shift register are the same as

those at the output. The third group of vectors represent a

signature generation phase. The LFSR has generated over 2000

test vectors at this point and a signature is captured at

timepoint 2009. This is indicated by the differing responses

on the signature and output lines. At timepoint 2011, the

signature is forced onto the output lines. At timepoint

2012, the analyzer is back in sample mode and normal testing

resumes. It is clear that nothing can be seen of the

functionality of the correlator during the testing operation.
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It is always assumed that the chip has been determined to be

functionally correct.

Compare these values to the normal outputs shown in Table

13. This approach hardly seems worthwhile when dealing with

a small number of output lines in a circuit increase and a

significant effort is required to detect a fault. Analysis

can be done much more easily and with less cost when the set

of outputs to be checked is reduced.
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TABLE 14
SIMULATION SAMPLING OF BIT DESIGN #2

TIMEPOINT LFSR OUTPUT SIGNATURE OUTPUT

0 iiiiiiiiiiiiiiiiiiiiiii I iii ii iiiii

1 00000000000000000000001 ii i i

2 00000000000000000000001 ii i i

3 00000000000000000000010 iiiiii

4 00000000000000000000100 iiiiii

5 00000000000000000001000 iiiiii

24 10000100001000010000100 00011 00011

25 00001000010000100001001 00011 00011

26 00010000100001000010010 00011 00011

27 00100001000010000100101 00010 00010

2007 11101101110010100011100 01000 01000

2008 11011011100101000111000 00101 00101

2009 10110111001010001110000 01111 00101

2010 01101110010100011100000 01111 00101

2011 11011100101000111000000 01111 01111

2012 10111001010001110000001 00110 00110

2013 01110010100011100000011 00100 00100
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V. AUTOMATIC TEST GENERATION

A. THE AUTOMATIC TEST GENERATION PROGRAM

The Automatic Test Generation (ATG) program used to

generate test vectors and fault grade BIT designs is an

optional tool available with the Genesil Silicon Compiler.

It was loaned to the Naval Postgraduate School VLSI

Laboratory by Silicon Compiler Systems Corporation to be used

in developing and evaluating the DFT strategies described in

this project.

ATG was designed to uncover manufacturing defects in a

completed chip. The faults are modeled as "stuck-at" faults

as described in the first chapter. ATG examines the designed

circuit before manufacturing and produces vectors capable of

detecting as many faults as possible within the constraints

of the algorithms used in this program. It is important to

stress that ATG provides the detection not the location of

the fault.

ATG is especially valuable because it provides the

designer with quick feedback on the testability of a circuit.

It is most effectively used in the early stages of the

design. By running ATG on each section as it is produced,

areas that reveal themselves as untestable can be redesigned

early in the design process or test registers can be included

to enhance the observability and controllability of the

internal nodes. The sets of test vectors can be saved and
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used to check the chip after it returns from the

manufacturer.

The algorithm used in the ATG program is a version of a

classical algorithm called the D-algorithm. Developed in

1966 by J.P. Roth [Ref. 20], the D-algorithm provides a

calculus to compute tests for failures. The algorithm

defines a failure as a transformation of hardware that

changes the logical functioning of the circuit. It defines a

primary output as a line that is not fed by any other lines

in the circuit and a primary output as a line whose signal is

accessible to the outside of the circuit. Finally, it

defines a test as a pattern of signals on the primary inputs

that produces a response on the primary outputs whose value

differs in the presence of a failure. [Ref. 20:p. 278]

Roth developed a five-valued calculus that carries out

line sensitization and justification. Sensitization is

closely related to observability. Sensitization is the

process by which the algorithm propagates a value to the

primary outputs. If the value can be propagated without any

conflicts, then the path is said to be sensitized and the

node tested is observable. Justification is closely related

to controllability. If the values required to test a gate

can be backed through the circuit to the primary inputs, then

the test is said to be justified and the nodes at the input

of the gate to be tested are said to be controllable.
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ATG uses justification to generate the test inputs and

sensitization to check the outputs [Ref. 15:p. 1.3]. Genesil

has forty primitive elements that make up the various blocks

and modules that are available to the designer. They vary

from a simple AND gate to a complicated tristate net. Each

primitive element has its own justification and sensitization

models. In applying the D-algorithm, values are placed on

the inputs of the gate being tested and then backed through

the circuit to the primary inputs. If the values can be

placed on the primary inputs without any conflicts, all is

well. If a conflict develops and the values cannot be

produced at the primary inputs, the process is backtraced to

another spot and ATG takes a different path to the primary

inputs and the process is repeated. The same is true of the

sensitization process. ATG tries to find a path to propagate

the N or W value to the primary output. The M or W values

refer to the value on the output of the gate being tested.

Again, if a certain path produces a contradiction, ATG tries

a different path. If either process fails to produce a

satisfactory solution, the fault is determined to be

untestable.

One of the areas that is very difficult to handle when

developing a test strategy is sequential logic. ATG attempts

to facilitate sequential testing by translating the

sequential circuits into combinational logic circuits that

exist over a limited time range. The technique is called
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time unrolling. Simply put, ATG treats each sequential

element as a multiplexer. When the clock is HIGH, the

element selects its data input; when the clock is LOW, the

element selects the output at the previous timepoint.

Sequential elements are thus reduced to a "stack" of

elements. Each element is a copy of the original element and

its position in the stack is determined by its timepoint.

Figure 30 shows how ATG would treat a simple latch element

(Ref. 15:p. 1.6].

time t+

CLOCK 
M) 

1 
i 

-

DATADA-1( x
OM TPUTct -1)

tim t-2

Figure 30. ATG Time Unrolling for a Simple Latch
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In conducting a test ATG first determines which faults

are obviously untestable. Examples of untestable faults are

gates with an input tied to a constant value or gates whose

outputs are ignored. It also determines which nodes are most

easily controllable and observable. These determinations

will help ATG make choices when it reaches a decision point

in finding paths of justification or sensitization. Rather

than working on only one path to the primary inputs and

outputs at a time, ATG uses what is called a modified

breadth-first search. This search proceeds gradually to the

periphery of the circuit, working on all signals and paths.

The program takes one step in processing a particular path,

puts the resulting justification or sensitization onto a list

of other pending processes, and then goes onto th, nev-

process. In this manner, the path from the gate being tested

expands to the primary inputs and outputs.

The breadth-first approach allows conflicts between

different paths of assertion to be recognized and corrected

early, speeding up the test generation. The disadvantage,

however, is that when a conflict is found, ATG backs up until

it finds the assertion that created the conflict and repeats

all justification and sensitization processes between the

point where the conflict was discovered and its cause. This

often requires that paths that are not related to the

conflicts are also redone [Ref. 15:p. 1.7].
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B. THE ATG FORM

Figure 31 shows the ATG form that the designer works with

when testing is being done. It consists of two parts, a

control part and a status part. The control section allows

the designer to set certain parameters and include additional

vector files into the testing process.

o The Output File specifies where the generated test
vectors are to be written.

o The Sequential Depth refers to the number of phases that
are required to pass a signal from primary input to
output. The default value is set to the maximum number
of latches found in the paths between input and output.

o The user can specify how many Random Input Vectors are
to be used as seed vectors. ATG generates the random
vectors in an attempt to speed up the testing process.

o The Simulation Vectors field refers to the number of
vectors that will be used to initialize a circuit. ATG
will fault grade the remaining test vectors.

o The Default Toggles field refers to the clocks to be
used.

o The user can elect to limit the amount of CPU time to
be used to generate a test vector file. The default
value is 1800 seconds. The designer can select NO and
ATG might run for hours. It is most useful to start
with a small time and work upwards.

o Input files can be used and fault graded by selecting
YES in the Fault Grade Only field. If the default is
selected (NO), then ATG will continue to generate new
vectors and determine fault coverage even after an input
file's entries have been exhausted.

o The Enable Input File field is the location to enter the
name of a file that the user wishes to provide test
vectors. This was the approach used in determining the
fault coverage for the BIT design discussed earlier.

o The Enable Init File provides a method for the designer
to modify the clocks to be used in simulation.
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o The Enable Coverage In and Default Coverage Out refers
to the method that the ATG program uses to keep track of
which faults have been tested. These options allow the
designer to use coverage maps produced during earlier
runs to reduce the amount of retesting that takes place
during additional test runs.

Genesil Version v7.1 -- Thu Mar 2 20:55:08 1989

Module: -iendavid/davidson/corlat bas2 ATG Control Proaram

ATG Control

Output File: >vecs

Sequential Depth: >-i
Random Input Vectors: >0
Initialization Vectors: >0
Default Toggles: NO YES
Limit Time: NO YES
Time Limit: >1800
Limit Coverage: NO YES
Fault Grade Only: NO YES
Enable Input File: NO YES
Enable Startup File: NO YES
Enable DFT File: NO YES
Enable Coverage In: NO YES
Default Coverage Out: NO YES

ATG Status

Vector Tests CPU Time (h:m:s)

Chanqe Tested Percent Change Total

336 0 1199 92.30 0 30:0"
337 0 1199 92.30 1 30:0P

Command Status

AT( done

Figure 31. Automatic Test Generation Form
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The second part of the ATG form is the status section.

The status section provides information about the current

test. It displays the number of the last two vectors

generated under the vector heading. Under the tests heading,

information is presented telling how many tests were

instantiated by each vector, the total number of tests

instantiated so far and the fault coverage percentage so far.

Finally, under the CPU heading, ATG displays how much CPU

time is used for each vector and how much total CPU time has

been used for the test so far.

There are two ways to update the status section once a

test is running, the UPDATESCREEN command from the ATG menu

commands can be used. This command will update the status

section to provide the most current information. It does not

provide a constant updating function. To continually update

the screen, the command update-loop can be entered on the

prompt line. This command will provide constant updating of

the status section until the test run is complete or until

the user aborts the command.

C. ANALYZING ATG RESULTS

Besides providing feedback via the status section of the

ATG form, ATG supplies specific feedback concerning areas

that were or were not covered during the test run. The

ANALYZE command of the ATG menu allows the designer to

hierarchically examine the circuit to find specifically what

areas had good and poor fault coverage. Figure 32 contains a
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portion of a Genesil session log that shows an example of the

hierarchical breakdown of the circuit used in the combiner

block. As discussed in Chapter III, certain gates in the

combiner were not able to be observed due to conflicts at the

primary outputs. Figure 33 shows, at the gate level, the

specific tests that were not instantiated. From this

information, the block was redesigned as described in Chapter

III.

atg
run_atg
) Checking file currency .
) Internal Object Hierarchy Initialized ....
) Completing Data Gathering Phase
) All files are up to date.
) Running ATG in background
updateloop
) ATG begun
) ATG is DONE
ACCEPTFORM
) Form is valid
) Text is written
atg
ANALYZE
) apprunedefault
FAULTS

/ (module): 347 tests out of 394 (88.0711%)
combiner (module): 160 tests out of 192 (03.3333%)

combin3 (module): 40 tests out of 48 (83.3333%)
XOR4 (module): 3 tests out of 4 (75%)

xor (XOR): 3 tests out of 4 (75%).
XOR5 (module): 1 tests out of 4 (25%)

Nor (XOP): i tests out of 4 (25%)
ORO (module): 2 tests out of 3 (66.6667%)

or (OR): 2 tests out of 3 (66.6667%)
ORI (module): 2 tests out of 3 (66.6667%)

or (OR): 2 tests out of 3 (66.6667%)
AND4 (module): 2 tests out of 3 (66.6667%)

and (AND): 2 tests out of 3 (66-6667%)
AND5 (module): 2 tests out of 3 (66.6667%)

and (AND): 2 tests out of 3 (66.6667%)
combin2 (module) 40 tests out of 48 (83.3333.)

XOR4 (module): 3 tests out of 4 (75%)
xor (XOR): 3 tests out of 4 (75%)

XOR5 (module): I tests out of 4 (25%)
xor (XOR): I tests out of 4 (25%)

ORO (module): 2 tests out of 3 (66.6667%)

Figure 32. ATG Analysis Showing Heirarchical breaKdown
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sel
AND4
sel abd
) No such path abd
sel and
faults

and (AND): 2 tests out of 3 (66.6667%)
Pin 0 /combiner/combin0/XOR1/xor (XOR) (gate 304)

) Pin 1 /$dummy/$GA24 (JUl_Al) (gate 24)
Pattern result

11 UNTESTED
) 01 TESTED

10 TESTED
sel
sel
sel
AND5
sel and
faults

and (AND): 2 tests out of 3 (66.6667%)
Pin 0 /$dummy/$GA21 (JUl_Al) (gate 21)

) Pin 1 /combiner/combin0/XORO/xor (XOR) (gate 305)
) Pattern result
) 11 UNTESTED

01 TESTED
) 10 TESTED
sel
sel
sel
ORO
sel or
faults
or (OR): 2 tests out of 3 (66.6667%)

Pin 0 /combiner/combin0/XOR5/xor (XOR) (gate 300)
Pin I /combiner/combinO/XOR2/xor (XOR) (gate 303)

Pattern result
00 TESTED
10 UNTESTED
01 TESTED

sel

Figure 33. ATG Analysis Showing Gate Level Breakdown
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VI. CONCLUSIONS

A. SUMMARY

This thesis has examined two of the main Design for

Testability techniques being practiced today as they are

implemented by the Genesil silicon compiler, the Scanpath

Design techniques and the Built-in Test technique. The use

of the Shiftable Test Latch in a variety of configurations

provides the designer with great flexibility in implementing

an efficient testing scheme and does not appreciably increase

the number of pins required. The addition of the ATG program

provided a tool by which fault coverage for the different

implementations could be evaluated.

The Scan Path technique had a number of advantages which

led to an optimum amount of fault coverage. Among these

advantages are:

o Scanpaths enhance the observability and controllability
of difficult-to-reach internal nodes. By increasing the
accessibility of these nodes, fault coverage can
be increased. This was demonstrated in Chapter III by
the redesign of the combiner module and the inclusion
of a test register.

o The set of test vectors generated by the scanpath is
,.ustomized to the circuit under test, consequently it is
smaller than the set of test vectors required by other
DFT techniques such as Built-in Test. This is
demonstrated by the results of Table 15. The table
compares the fault coverage given by the correlator chip
without any DFT measures, with a scanpath, and using an
LFSR to generate test vectors. The scanpath design
achieved the highest fault coverage and used the
smallest number of test vectors.
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o Scanpaths allow the designer to have absolute control
over the vectors to be used in testing. It also
provides a method to observe the state of the internal
nodes during normal operation. This has the added
advantage of changing sequential sections of the design
into combinational logic by the addition of an STL in
the feedback loop.

There are also disadvantages to the Scan Path technique:

o An outside tester is required to apply the test vectors
and analyze the responses. As circuits become more
complex, testing becomes more difficult and testers more
expensive.

o The fact that test vectors must be loaded serially into
the shift registers increases testing time. Genesil has
attempted to help alleviate this problem by providing a
function in the STL that allows new values to be loaded
into the shift register as test vectors are loaded in
the data latches. The inclusion of a local test clock
allows values to be shifted into the test register
without interfering with the normal operation of the
system or being delayed by the system clock.
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TABLE 15
FAULT COVERAGE COMPARISONS

DEVICE MODULE VECTORS TESTS FAULT COVERAGE

CORLATBAS2 605 1215 of 1314 90.47

ADDER 154 of 170 90.59

COMBINER 160 of 192 83.33

DATAIN 242 of 259 93.44

MASKIN 242 of 259 93.44

OUTPUT 15 of 15 100

REFIN 242 of 259 93.44

XNORREG 112 of 112 100

$DUMMY 40 of 48 100

TGCORLATBAS3 133 1310 of 1378 95.07

ADDER 164 of 170 96.47

COMBINER1 112 of 112 100

COMBINER2 80 of 80 100

DATAIN 242 of 259 93.44

MASKIN 242 of 259 93.44

OUTPUT 15 of 15 100

REFIN 242 of 259 93.44

XNORREG 112 of 112 100

$DUMMY 101 of 112 90.18
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TABLE 15 (cont)

LF3CORLATBAS2 2254 1213 of 1324 91.61

ADDER 152 of 170 89.41

COMBINER 160 of 192 83.33

DATAIN 242 of 259 93.44

MASKIN 242 of 259 93.44

OUTPUT 13 of 15 86.67

REFIN 242 of 259 93.44

XNORREG 112 of 112 100

$DUMMY 50 of 58 86.21

The second method to be evaluated was the Built-in Test

technique. The advantages of the BIT strategy include:

o Some or all of the test functions can be moved onto the
chip. The first BIT design examined the circuit with
only a linear feedback shift register added for test
generation. The second design included both an LFSR and
a signature analyzer for generation and analysis. The
inclusion of the test functions within the chip help to
decrease the cost of testing and allow tests to be run
with a minimum of outside involvement.

o Tests can be generated and run at system speed. This
allows potentially millions of tests to be performed
each second. The time of testing can be significantly
reduced from that of the scanpath designs.

o The use of the signature analyzer greatly eases the
burden of outside analysis of testing. While it does
not remove entirely the need to examine the responses it
reduces the number of output responses that need to be
examined.

o Genesil gives the designer ready-made generators and
signature analyzers with defaults optimized to the
testing problem. However, the designer can reconfigure
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the feedback chains used in these devices if a specific

application is desired.

There are disadvantages to the BIT techniques:

o The user has no control over the sequence of test
vectors to be applied to the circuit under test other
than selecting the polynomial constants and starting
values.

Each different DFT strategy has its pros and cons. The

most suitable implementation of DFT might include both types

of DFT strategies within a single chip. An LFSR is used to

generate strings of vectors to apply to test the nodes that

are easily observable and controllable. Scanpaths are used

to provide a method to enhance the observability and

controllability of nodes that might otherwise be untestable.

The signature analyzer can be included at the output of the

circuit to compact the output response of the circuit during

testing.

The methodology that should be employed includes the

testing and accurate simulation of every module as it is

designed. In this manner, sections which exhibit poor

testability can be redesigned before actual production. As

the circuit is being built up and different modules and

blocks are being combined, they also should be tested and

simulated. Finally, the entire chip is assembled and final

testing is completed. The testing done at this level should

be retained and provide after-manufacture testing.
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B. RECOMMENDATIONS

The following are recommendations for further study:

1. The continued development of the use of the silicon

compiler as a tool for system designers without in-depth

knowledge of VLSI design techniques. The automatic

capabilities of the Genesil silicon compiler are particularly

attractive to a designer attempting the rapid development and

testing of a custom system.

2. Build a large. chip than the correlator chip

developed in this research, implement the Design for

Testability strategies described in this research, and

continue the project through manufacture and testing.

3. Develop a set of translation programs to allow vector

files generated on the silicon compiler to be used by the

TEKTRONIX tester available in the VLSI laboratory. This will

allow the testing of Genesil-designed chips with existing

hardware.

4. Research the use of linear feedback shift registers

in testing and methods to optimize the polynomials chosen to

implement the XOR feedback paths.
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DESIGN FOR TESTABILITY TUTORIAL

A. INTRODUCTION

The purpose of this tutorial is to introduce the designer

to the shiftable test latch and the different configurations

that are included in the Genesil silicon compiler. It will

demonstrate to the user the various forms that are required

for the successful creation of a test register as a random

logic block or a parallel datapath. Prior to beginning any

work on Genesil, a user is encouraged to read and become

familiar with the tutorial included in Robert Settle's

thesis, "Design Methodology Using the Genesil Silicon

Compiler" (Ref. 5]. It provides a good guide to the

mechanics of the Genesil hierarchical approach to chip

design. This tutorial is written with the assumption that

the user has already read Reference 5 and is familiar with

the basic manipulation of Genesil.

It is important to stress that all designs must be

carefully replanned; a sketch is very useful. Because

Genesil relies heavily on a netlist description of the

circuit, the designer must ensure that all net names are

unambiguous and complete.
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B. RANDOM LOGIC BLOCK

The first implementation to be examined is that of the

test register comprised of a cascaded number of stages of the

shiftable test latch (STL). The initial design will be an 8-

bit test register using the globally clocked STL. Figure A.1

shows the random logic block specification form for the STL

before any of the fields have been completed. Note that in

the global implementation all of the input (control or data)

are controlled by the two clock phases PHX and PHY. Figure

A.2 shows the form after it has been completed. Notice that

the width field is now set to 8 and the DIN and DOUT

connectors have been given signal names in bus notation

representing 8 bit positions. The inputs ml and m2 are

signals that are decoded in order to provide the correct

sequence of control inputs as shown in Table A.1 [Ref. 13:p.

15.14]. Figure A.3 shows the Genesil icon for the 8-bit test

register. These forms are relatively easy to complete, but

the designer must ensure that the right signal names are

given to the input and output lines in order to make proper

connections to the rest of the circuit.

Figure A.4 shows the implementation of the STL with a

local clock scheme, again note the clocked inputs and outputs

and the additional test clock (phase-ta and phasetb). The

local clock scheme requires clock inputs independent of the

system clock. This version of the STL allows serial data to

the shifted in or out independently of normal operation. Its
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table of oDeration is the same as that used for the globally

clocked STL.

Figure A.5 shows the form used for the unclocked version

of the STL. Note here that the a, b, f, and s inputs are all

strobed inputs. The unclocked STL's controls operate

independently of any system clock. These strobed signals

typically are generated off the chip and it is up to the user

to ensure that they are properly timed to prevent any

contention with each other and normal operation. The signals

to be used and their proper sequence are shown in Table A.2

[Ref. 13:p. 15.6].

C. PARALLEL DATAPATH

The second implementation of the STL that Genesil offers

is in a parallel datapath. The basic STL can be constructed

as well as the vector generator mode and the signature

analyzer mode. Figure A.6 shows the Genesil icon used to

represent the STL The parallel datapath configuration is

made of three components, an interface on the left or input

side, the test latch in the middle, and a general purpose

port on the right or output side. Figure A.7 shows the

specification form zreating the datapath. Note that it is 8

bits wide and uses a direct driver. It is helpful to note

that if the bus name is left in its default name (BUSB in

this case), the bus will act as a feedthrough.

Once the basic daLapath has been established, blocks must

be added to it. The first block added is the interface
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block. The specification form for the interface block,

before any definition has occurred, is shown in Figure A.8.

Figure A.9 shows the form after is has been completed. The

interface shown here gets its input from Bus A (input

steering) and Bus B is not connected. Note also that for its

output steering, it drive Stdout which will continue the

parallel datapath to the next component, the test latch.

The test latch specification form is shown in Figure

A.10. From this form the test latch can be configured in 9

different ways. This particular form is set up in the basic

unclocked mode. Other than the extra work required to

complete the other blocks of the parallel datapath, this

irplementation is essentially the same as that used in the

random-logic basic testlatch.

Figure A.11 shows the specification form used for the

general purpose output port. The important things to notice

with this form are the variety of speed/power combinations

the designer can choose and the mask that specifies which

connectors are to be used. This is a hexadecimal number and

a 1 in any bit position signifies that there is to be a

connector there. Figure A.12 shows the completed Datapath

Functional Specification Form.

Figure A.13 shows the specification form for the STL

using the vector generate mode of operation. The only added

field is that representing the polynomial constant discussed

in Chapter IV. When the form is first entered, the
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polynomial value is set automatically based on the width of

the datapath. However, if the width is changed, the

polynomial is not also changed. It is important to check the

system manual for an optimized polynomial and input it as

desired. The signature analyzer form is very similar to the

vector generator.

This overview should allow the designer to quickly

implement his own DFT strategies. Detailed information on

each of the types of STL configurations is included in the

Genesil System manual [Ref. 14 and 15] and a good overview of

the capabilities of Genesil and DFT are included in the

Johannsen article, "Genesil Silicon Compilation and Design

for Testability" [Ref. 12].
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Genesil Version v7.1 -- Thu Mar 2 21:23:06 1989
Random Logic: gendavid/davidson/dft tst Random Logic Block Editor
****~*i********************************************** ******* A A*********** *******

Random Logio Block Specification

Block type: TLATCHG
Block index: 0
Name: >TLATCHGO
Width: > 1

Regime
Connector Width I Timing
PHX 1 1 Phase X >FALSE
PHY 1 1 Phase Y >FALSE
TIN 1 1 Vx(t) >FALSE
TOUT 1 1 Sx(t~l) >NC
M1 1 1 Vy(t-1) >FALSE
M2 1 1 Vy(t-1) >FALSE
LOAD 1 1 Vy(t-1) >FALSE
DIN 1 1 Vx(t) >FALSE
DOUT 1 1 Sy(t) >NC

Figure A.1. STL Random Logic Block Specification Form

***************************************** ******************* ** ****t**** *** *******

Genesil Version v7.1 -- Thu Mar 2 21:26:03 1989
RandomLogic.; gendavid/davidbon/dft_tst Random Logic Block Editor

Random Logic Block Specification

Block type: TLATCHG
Block index: 0
Name: >TLATCHGO
Width: > 8

Regime
Connector Width | Timing
PHX 1 1 Phase X >phase a
PHY 1 1 Phase Y >phase b
TIN 1 1 Vx(t) >tin
TOUT 1 1 Sx(t+1) >tout
Ml 1 1 Vy(t-1) >ml
M2 1 1 Vy(t-1) >m2
LOAD 1 1 Vy(t-1) >load
DIN 8 1 Vx(t) >dinf7:0]
DOUT 8 1 Sy(t) >dout[7:01

Figure A.2. Completed STL Specification Form
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TABLE A.1
TRUTH TABLE OPTIONS FOR LOCAL/GLOBAL CONFIGURATION

Encoded
Inputs Operation Decoded Outputs

Ml M2 PHASE X PHASE Y
0 0 SHIFT A B
1 0 FORCE (1) F B
0 1 SAMPLE S B
1 1 SWAP (2) S -

TLATCHGO

TLATCHG

TI N TOUT

O:N DOUT

LOAO M2 Ml PHY PHX

phase_a-

priase~ -h l -T ~
m2 - -

load-

tin tout
din dout

Figure A.3. Genesil Icon for 8-bit

Random Logic Test Register
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Genesil Version v7.1 -- Thu Mar 2 21:41:37 1989
RandomLogic: gendavid/davidson/dft_tst Random Logic Block Editor

Random Logic Block Specification

Block type: TLATCHL
Block index: 1
Name: >TLATCHL1
Width. > 8

Regime
Connector Width I Timing
PHX 1 1 Phase X >phase a
PHY 1 1 Phase Y >phase b
PHTA 1 2 Phase X >phase ta
PHTB 1 2 Phase Y >phase tb
TIN 1 2 Vx(t) >tin
TOUT 1 2 Sx(t+l) )tout
Ml 1 2 Vy(t-l) >ml
M2 1 2 Vy(t-l) >m2
LOAD 1 1 Vy(t-l) >load
DIN 8 1 Vx(t) >dinf7:01
DOUT 8 1 Sy(t) >dout[7:0]

Figure A.4. STL with Local Clocking Scheme

Genesil Version v7.1 -- Thu Mar 2 21:45:23 1989
Random Logic: gendavid/davidson/dft_tst Random Logic Block Editor

Random Logic Block Specification

Block type: TLATCHU
Block index: 0
Name: >TLATCHUO
Width: > 8

Regime
Connector Width I Timing
PHX 1 1 Phase X >phase a
PHY 1 1 Phase Y >phase b
A 1 2 Strobe Vx )a
B 1 3 Strobe Vx >b
F 1 4 Strobe Vx >f
S 1 5 Strobe Vx >s
TIN 1 2 Vx(t) >tin
TOUT 1 3 Sy(t) >tout
LOAD 1 1 Vy(t-l) >load
DIN 8 1 Vx(t) >dinf7:01
DOUT 8 1 Sy(t) >dout[7:01

Figure A.5. Unclocked Version of STL
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TABLE A.2
TRUTH TABLE OPTIONS FOR UNCLOCKED CONFIGURATION

Inputs Operation

0000 HOLD
1000

0100 SHIFT

0010 FORCE

000 1 SAMPLE
0100 _

0001

0010 SWAP*
0100

,0 1 0

U
0

06 1L 0

C 0

I T L1 A

E E

Figure A.6. Genesil Icon for 8-bit Parallel

Datapath Configuration
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Genesil Version v7.1 Thu Mar 2 21:49:50 1989
ParallelDatapath: gendavid/davidson/dfttst2 DATAPATH Block Editor

DATAPATH Functional Specification:
Width: > 8
Phase A: >phase a (PHASE-A)
Phase B: >phase b (PHASE B)

Bus A Name:>bus a
Driver: DIRECT PRECHARGE TRISTATE NONE
Out Left: YES NO Out Right:YES NO

Bus B Name:>BUS B Transfer: PHASE A PHASEB
Driver: DIRECT PRECHARGE TRISTATE NONE
Out Left: YES NO Out Right:YES NO

Number of slices: > 0

Blocks:

Figure A.7. Specification Form for Parallel Datapath

Genesil Version v7.1 -- Thu Mar 2 21:50:24 1989
Parallel -Datapath: gendavid/davidson/dfttst2 DATAPATH Block Editor

INTERFACE Fun~tional Specification
Block #0

Name: >INTERO

Standard input/output 1:
Top View: NO CONNECT THROUGH LOGICFUNCTIONS

Standard Input/Output 2:
Top Viewi NO CONNECT THROUGH LOGICFUNCTIONS

Figure A.8. Specification form for Interface Block
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Genesil Version v7.1 -- Thu Mar 2 21:51:14 1989
ParallelDatapath: gendavid/davidson/dft tst2 DATAPATH Block Editor

INTERFACE Functional Specification
Block #0

Name: >inter0
.............................................................

Standard Input/Output 1:
Top View: NO CONNECT THROUGH LOGIC FUNCTIONS
Phase X; PHASE A PHASE_B

Input Steering: STDIN 1 STDIN 2 BUS A BUSB
CONSTANT EXTERNAL
STDMUX BUSMUX 2_WAYMUX 4_WAYMUX

Input Inversion: NONE CONSTANT SELECTABLE

Shift: NO LEFT RIGHT BOTH

Latch: NONE TRANSPARENT GATED DFF
LEFT RIGHT BOTH

Output Steering:
Drive Stdout: YES NO
Drive Bus A: YES NO
Drive Bus B: YES NO

Standard Input/Output 2:
Top View: NO CONNECT THROUGH LOGICFUNCTIONS

Figure A.9. Completed Interface Block Form

* **t* ** ***** ****** *** ***** ********* ****************i******* ***************** *

Genesil Version v7.1 -- Thu Mar 2 21:53:14 1989
Parallel Datapath: gendavid/davidson/dfttst2 DATAPATH Block Editor

TSTLAT Functional Specification
Block #1

Name: >tstlatch
Phase X: PHASE A PHASEB
Shift register: BASIC GENERATOR SIGNATURE
Control signals: UNCLOCKED LOCAL GLOBAL
Mode: TRANSPARENT GATED
Sample: STDIN 1 STDIN_2

Connectors:
Tin: >tin (TIN)
Tout: >tout (TOUT)
A: >a (A)
B: >b (B)
F: >f (F)
S: >s (S)

Figure A.10. Datapath Basic STL Specification Form
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Genesil Version v7.1 -- Thu Mar 2 21:53:58 1989
Parallel Datapath: gendavid/davidson/dfttst2 DATAPATH Block Editor

GENERAL PORT Functional Specification
Block #2

Name. >port2

Standard Input/Output 1:
Top View: NONE PASS IN PORT OUT PORT
Connector Name: >ext (EX~fl)
Fan: TOP BOTTOM SPLIT
Mask: >Oxffffffff

Speed/Power: HIGH SPEED AVERAGE LOWPOWER NOBUFFER
Driver: DIRECT TRISTATE PRECHARGED

Standard Input/Output 2:
Top View: NONE PASS INPORT OUTPORT

Figure A.11. Specification Form for General Purpose Port

Genesil Version v7.1 -- Thu Mar 2 21:54:15 1989
ParallelDatapath: gendavid/davidson/dfttst2 DATAPATH Block Editor

DATAPATH Functional Specification:
Width: > 8
Phase A: >phase a (PHASEA)
Phase B: >phase b (PHASEB)

Bus A Name:>bus a
Driver: DIRECT- PRECHARGE TRISTATE NONE
Out Left: YES NO Out Right:YES NO

Bus B Name:>BUS B Transfer: PHASE A PHASEB
Driver: DIRECT PRECHARGE TRISTATE NONE
Out Left: YES NO Out Right:YES NO

Number of slices: > 0

Blocks:
COPY DEL EDIT FLIP MOVE 0: >inter0 (interface)
COPY DEL EDIT FLIP MOVE 1: >tstlatch (testability latch)
COPY DEL EDIT FLIP MOVE 2: >port2 (general port)

Figure A.12. Completed Specification Form for

Parallel Datapath
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Genesil Version v7.1 -- Thu Mar 2 21;56:53 1989
ParallelDatapath: gendavid/davidson/dfttst2 DATAPATH Block Editor

TSTLAT Functional Specification
Block #1

Name: )tstlatch
Phase X: PHASE A PHASE B
Shift register: BASIC GENERATOR SIGNATURE
Control signals: UNCLOCKED LOCAL GLOBAL
Polynomial: > Oxlld
Mode: TRANSPARENT GATED
Sample: STDIN 1 STDIN_2

Connectors:
T n >tin (TIN)
Tout: >tout (TOUT)
PHASE TA: >phase ta (PHASE TA)
PHASE TB: >phase tb (PHASE TB)
MI: >ml (MI)
M2: >m2 (M2)
M3: >m3 (M3)

Figure A.13. Specification Form for Datapath STL
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